\measuredangle

 Computational Linguistics

 Computational Linguistics 2014-2015

- Walter Daelemans
- Guy De Pauw
- Mike Kestemont
(walter.daelemans@uantwerpen.be)
(guy.depauw@uantwerpen.be)
(mike.kestemont@uantwerpen.be)
http://www.clips.uantwerpen.be/cl1415

Universiteit Antwerpen

Practical

Location	P0.11 (Scribanihuis)
Reading material	• D. Jurafsky \& J.H. Martin (2009) Speech and Language Processing - An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd ed). Pearson Education, USA. Natural Language Processing with Python
Software	Python 3.4 and NLTK: Installation Instructions

Universiteit Antwerpen

Program

Session	Day	Date	Chapter	Topic	Reading Assignment	Slides	Take-home Assignment
1	Monday	29/9/2014	Python	Session 1 - Variables	See Github		
2	Thursday	2/10/2014	Python	Session 2 - Collections			
3	Monday	6/10/2014	Python	Session 3 - Conditions (and an introduction to loops)			
4	Thursday	9/10/2014	Python	Session 4 - Loops			
5	Monday	13/10/2014	Python	Session 5 - Reading and writing to files			
6	Thursday	16/10/2014	Python	Session 6 - Writing your own Functions and importing packages			
7	Monday	20/10/2014	Python	Session 7 - Regular Expressions in Python			
8	Thursday	23/10/2014	Python	Session 8 - Advanced looping in Python and list comprehensions			
9	Monday	27/10/2014	Theory	Introduction to Computational Linguistics	Jurafsky \& Martin: Chapter 1	PDF	
10	Monday	3/11/2014	Theory	Regular Expressions and Finite State Automata \& Transducers	Jurafsky \& Martin: Chapter 2; Chapter 3	Slides morfsegment.py	See last slide. Deadline: 24/11 participles.py
	Monday	10/11/2014	Remembrance day: no session				
11	Monday	17/11/2014	Theory	Part-of-Speech Tagging	Jurafsky \& Martin: Chapter 5 (not 5.5, 5.8 and 5.9)	Slides Python Code	See last slide. Deadline: 8/12
12	Monday	24/11/2014	Theory	Syntactic Analysis \& Parsing	Jurafsky \& Martin: Chapter 12 (not 12.7.2, 12.8); Chapter 13 (not 13.4.1, 13.4.2, 13.5.1)		
13	Monday	1/12/2014	Theory	Minimum Edit Distance + Probabilistic Methods	Jurafsky \& Martin: Chapter 3.11; Chapter 4.1, 4.2 and 4.3; Chapter 5.5 and 5.9; Chapter 14.1, 14.3 and 14.4;		
14	Monday	8/12/2014	Theory	Word Sense Disambiguation	Jurafsky \& Martin: Chapter 19.1, 19.2, 19.3, Chapter 20 (20.1->20.5)		
15	Monday	15/12/2014	Theory	Sentence semantics and discourse; Information extraction	Jurafsky \& Martin: Chapter 21; Chapter 22		

Universiteit Antwerpen

\measuredangle

Bayesian Inference

N -gram models

Universiteit Antwerpen

Statistical Methods

- automatically derive statistical data from (annotated) corpora
- frequency of observed events are interpreted as the probability of those events occurring in the future
- We can use these probabilities to perform disambiguation
e.g. Most likely tag for can in "I can do this."?

$$
\mathrm{P}(\mathrm{MD} \mid c a n) \text { vs } \mathrm{P}(\mathrm{NN} \mid c a n) \text { vs } \mathrm{P}(\mathrm{VB} \mid c a n)
$$

- $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$ is calculated through Bayesian Inference

Noisy Channel

INPUT

NOISY CHANNEL
OUTPUT

Task	Input	Output
Speech Recognition	String of Words	Acoustic Signal
OCR/ Spellchecking	Correct Text	Text with errors
POS Tagging	String of POS Tags	String of words
Machine Translation	Sentence in English	Sentence in Chinese

P(Input|Output) ?????

Universiteit Antwerpen

Bayesian Inference

Bayes' Law

$$
P(x \mid y)=\frac{P(y \mid x) \cdot P(x)}{P(y)}
$$

e.g. From Wikipedia

Drug Test: 0.99 accurate (99% chance that a user tests positive, 99% chance that a nonuser tests negative)
Users: 0.5% of the population
What is the probability that someone who tests positive, is a user?

$$
\begin{aligned}
\mathrm{P}(\text { User } \mid+) & =\frac{\mathrm{P}(+\mid \text { User }) . \mathrm{P}(\text { user })}{\mathrm{P}(+)} \\
& =\frac{0.99 * 0.005}{P(+\mid \text { User }) * P(\text { User })+P(+\mid \text { no }} \\
& =\frac{0.99 * 0.005}{0.99 * 0.005+0.01 * 0.995} \\
& =0.332
\end{aligned}
$$

Bayesian Inference

Bayes' Law

$$
P(x \mid y)=\frac{P(y \mid x) \cdot P(x)}{P(y)}
$$

From a corpus we calculated the following probabilities
$\mathrm{P}($ can $\mid \mathrm{MD})=0.8$ (the frequency with which can was observed as MD)
$\mathrm{P}($ can $\mid \mathrm{NN})=0.1$ and $\mathrm{P}($ can $\mid \mathrm{VB})=0.1$
$P(M D)=0.05, P(N N)=0.3$ and $P(V B)=0.1$
$P(c a n)=0.00001$
What is $P(M D \mid c a n)$, the probability that we need to tag MD when we see 'can'?
$\begin{aligned} P(M D \mid c a n) & =\frac{P(\text { can } \mid M D) \cdot P(M D)}{P(c a n)} \\ & =\frac{0.8 * 0.05}{1}=0.04\end{aligned}$
$P(N N \mid c a n)=P($ can $\mid N N) \cdot P(N N)=0.1 * 0.3=0.03$
$P(V B \mid$ can $)=P($ can $\mid V B) \cdot P(V B)=0.1 * 0.1=0.01$

Exercise

$P(x \mid y)=\frac{P(y \mid x) \cdot P(x)}{P(y)}$
"can" is counted 60 times as "MD" in corpusA and 40 times as "NN". In corpusB "can" is counted 70 times as "NN" and 30 times as "MD".

1. What is the probability of "can" as "MD" in corpusA?
2. What is the probability of "can" as "NN" in corpusB?
3. We pick a sentence randomly from one of the 2 corpora: "I can do this"

What is the probability that this sentence came from corpusA?

Exercise
$P(x \mid y)=\frac{P(y \mid x) \cdot P(x)}{P(y)}$
"can" is counted 60 times as "MD" in corpusA and 40 times as "NN". In corpusB "can" is counted 70 times as "NN" and 30 times as "MD".

1. What is the probability of "can" as "MD" in corpusA?
2. What is the probability of "can" as "NN" in corpusB?
3. We pick a sentence randomly from one of the 2 corpora: "I can do this"

What is the probability that this sentence came from corpusA?

```
\(\mathrm{P}(\) corpusA|canMD) \(\quad=(\mathrm{P}(\) canMD|corpusA).P(corpusA))/ \(\mathrm{P}(\) canMD \()\)
    \(=(60 / 100 \times 1 / 2) /(60+30 / 200)\)
    \(=(0.6 \times 0.5) / 0.45\)
    \(=0.667\)
```

Bayesian Inference

In language technology, we calculate the probability of the association between an input sequence and an output sequence.
e.g. Machine translation
argmaxInput $\mathrm{P}($ fille|girl $)=$

argmaxInput P (fille) $\quad \mathrm{P}$ (girl|fille)

Prior Likelihood
(Language
Model)
(Domain Model)

Bayesian Inference

argmaxInput $\mathrm{P}($ fille|girl $)=$

$$
\begin{array}{c|c}
\text { argmaxInput } P(\text { fille }) & P(\text { girl|fille }) \\
\text { Prior } & \begin{array}{c}
\text { Likelihood } \\
\text { (Language } \\
\text { Model) }
\end{array} \\
\text { (Domain } \\
\text { Model) }
\end{array}
$$

The Domain Model provides the probability that girl can be translated as fille The language model provides the probability that the word fille exist (in that context)

Bayes' Rule \& Noisy Channel

	P (Input)	P(Output\|Input)
Machine Translation	Language Model	Translation model
OCR		Model of OCR errors
Spellchecking		Model of spelling errors
POS-Tagging		Tag-Word Model
Speech Recognition		Acoustic model

Universiteit Antwerpen

Language Model

- What is the probability of a given sequence of words, tokens, tags?
- Most common: n-gram models
- data driven: given $\quad n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
- unigram: $\quad \mathrm{P}($ word $)=$ freq (word) $/ \mathrm{N}$

$$
P(\text { sentence })=\Pi P(\text { word })
$$

Universiteit Antwerpen

Language Model

- What is the probability of a given sequence of words, tokens, tags?
- Most common: n-gram models
- data driven: given $n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
- unigram: $\quad \mathrm{P}($ word $)=$ freq(word) / N

$$
P(\text { sentence })=\Pi P(\text { word })
$$

Universiteit Antwerpen

Language Model

- What is the probability of a given sequence of words, tokens, tags?
- Most common: n-gram models
- data driven: given $n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
- unigram: $\quad \mathrm{P}($ word $)=$ freq(word) / N

$$
P(\text { sentence })=\Pi P(\text { word })
$$

Universiteit Antwerpen

Language Model

- What is the probability of a given sequence of words, tokens, tags?
- Most common: n-gram models
- data driven: given $n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
- unigram: $\quad \mathrm{P}($ word $)=$ freq(word) $/ \mathrm{N}$

$$
\mathrm{P}(\text { sentence })=\Pi \mathrm{P}(\text { word })
$$

Universiteit Antwerpen

Language Model

- But unigram is a weak language model
- Suppose we want to predict the most likely possible word in the sentence

Just then, the white...
According to unigram:
$P($ the $)=0.07 \quad P($ rabbit $)=0.00001$
And so
P (Just then, the white the) $>P$ (Just then, the white rabbit)
Although intuitively
P (Just then, the white the) $<P$ (Just then, the white rabbit)

- Contextual information limited to n-value (cfr. n-gram models)

Language Model

- $P($ sentence $)=\Pi P($ word $)$

Unigram: $\mathrm{P}($ word $)=$ freq(word) / N bigram: $\mathrm{P}\left(\right.$ word $_{i} \mid$ word $\left._{i-1}\right)=$ freq('wordi-1 word $_{i}$ ') / freq(wordi-1)
$P($ rabbit \mid white $)=$ freq $(w h i t e ~ r a b b i t) / f r e q(w h i t e) ~$
$P($ the \mid white $)=$ freq(white the) $/ f$ freq(the)
data driven: given $\quad n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$

Universiteit Antwerpen

Language Model

- $P($ sentence $)=\Pi P($ word $)$

Unigram: $\mathrm{P}($ word $)=$ freq(word) / N bigram: $\mathrm{P}\left(\right.$ word $_{i} \mid$ word $\left._{i-1}\right)=$ freq('wordi-1 word $_{i}$ ') / freq(wordi-1)
$P($ rabbit \mid white $)=$ freq $(w h i t e ~ r a b b i t) / f r e q(w h i t e) ~$
$P($ the \mid white $)=$ freq(white the)/freq(the)
data driven: given $n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$

Universiteit Antwerpen

Language Model

- $P($ sentence $)=\Pi P($ word $)$

Unigram: $\mathrm{P}($ word $)=$ freq(word) / N bigram: $\mathrm{P}\left(\right.$ word $_{i} \mid$ word $\left._{i-1}\right)=$ freq('wordi-1 word $_{i}$ ') / freq(wordi-1 $)$
$P($ rabbit \mid white $)=$ freq(white rabbit)/freq(white)
$P($ the \mid white $)=$ freq(white the)/freq(the)
data driven: given

$$
\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \ldots \mathrm{n}_{\mathrm{z}}
$$

Language Model

- $P($ sentence $)=\Pi P($ word $)$

Unigram: $\mathrm{P}($ word $)=$ freq(word) / N
bigram: $\mathrm{P}\left(\right.$ word $_{i} \mid$ word $\left._{i-1}\right)=$ freq('wordi-1 wordil $\left._{i}\right) /$ freq(wordi-1)
trigram: $\mathrm{P}\left(\right.$ wordil word $_{i-2}$ word $\left._{i-1}\right)=$ freq('wordi-2 $^{\text {word }_{i-1}}$ wordi' $\left._{i}\right) /$ freq(wordi-2wordi-1 1)
$\mathrm{P}($ rabbit|the white $)=$ freq(the white rabbit)/freq(the white)
$P($ the |the white $)=$ freq(the white the)/freq(the white)
data driven: given $\quad n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
Universiteit Antwerpen

Language Model

- $P($ sentence $)=\Pi P($ word $)$

Unigram: $\mathrm{P}($ word $)=$ freq(word) / N bigram: $\mathrm{P}\left(\right.$ word $_{i} \mid$ word $\left._{i-1}\right)=$ freq('wordi-1 wordil $\left._{i}\right) /$ freq(wordi-1 $)$
trigram: $\mathrm{P}\left(\right.$ wordil word $_{i-2}$ word $\left._{i-1}\right)=$ freq('word $_{i-2}$ word $_{i-1}$ wordi' $\left._{i}\right) /$ freq(wordi-2wordi-1 $^{\text {}}$)
$\mathrm{P}($ rabbit|the white $)=$ freq(the white rabbit)/freq(the white)
$P($ the |the white $)=$ freq(the white the)/freq(the white)
data driven: given $n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{z}$
Universiteit Antwerpen

\mathbf{N}-gram models

- The higher n, the more context is captured
- The higher n, the less statistical evidence we find for each context: sparse data problem

PCFG as a language model

$$
P(\text { tree })=\Pi P\left(\text { rule }_{\mathrm{i}}\right)
$$

16/343

$$
\begin{array}{ll}
\mathrm{P}(\text { parse }) & =\prod_{\mathrm{p}}\left(\text { rule }_{\mathrm{i}}\right) \\
\mathrm{P}(\text { sentence }) & =\Sigma \mathrm{p}\left(\text { parse }_{\mathrm{k}}\right) \\
\mathrm{P}(\text { text }) & =\Sigma \mathrm{p}\left(\text { sentence }_{\mathrm{l}}\right)
\end{array}
$$

Bayes' Rule \&. Noisy Channel		
Machine Translation		P(Input)
OCR		Translation model
		Model of OCR errors
Spellchecking		Model of spelling errors
POS-Tagging		Tag-Word Model
Speech Recognition		Acoustic model

Probabilistic Spelling Correction

Kernighan et al (1990): misspelt word differs from correct word in 1 substition, insertion, transposition or deletion

error	Correction	Correct Letter	Error Letter	Position	Type
acress	actress	t	-	2	deletion
acress	cress	-	a	0	insertion
acress	caress	ca	ac	0	transposition
acress	access	c	r	2	substitution
\ldots					

- correction = argmaxP(t|c).P(c)
with $\mathrm{t}=$ =typo and C: list of correct words
- P(c): prior: language model (unigram)
- $P(t \mid c): \quad$ Model of misspellings

Universiteit Antwerpen

Probabilistic Spelling Correction

- Kernighan: 44×10^{6} word AP newswire corpus
- PRIOR:

c	Freq(c)	$\mathrm{P}(\mathrm{c})$
actress	1343	.0000315
cress	0	.000000014
caress	4	.0000001
access	2280	.000058

Probabilistic Spelling Correction

- Kernighan: 44×10^{6} word AP newswire corpus
- PRIOR:

c	Freq(c)	$\mathrm{P}(\mathrm{c})$
actress	1343	.0000315
cress	0	.000000014
caress	4	.0000001
access	2280	.000058

smoothing

Universiteit Antwerpen

Smoothing

What if we want to calculate the probability of something we haven't seen yet?

I like failblog

+ 'failblog' may not have been seen yet
$\rightarrow 0$ probability
$\rightarrow 0$ probability for entire sentence ($\Pi \mathrm{P}$ (word))
- Add-1 smoothing: $\quad P($ word $)=\quad$ freq (word $)+a$

N + a.d
with a: normalization factor (often $a=1$)
with N : total number of tokens (words)
with d: total number of types (individual words)

Probabilistic Spelling Correction

- Model of misspellings: $\mathrm{P}(\mathrm{t} \mid \mathrm{c})$
- Proper $\mathrm{P}(\mathrm{t} \mid \mathrm{c})$ cannot be computed, but can be estimated
- Use corpus of errors to construct confusion matrix of 26×26 for each type of mistake
del[$[x, y]$: count how many times $x y$ was typed as x ins[x, y]: count how many times x was types as $x y$ sub[x,y]: count how many times x was typed as y trans[x,y]: how many times xy was typed as yx

Probabilistic Spelling Correction

Correction	$\mathbf{P}(\mathbf{c})$	$\mathbf{P}(\mathrm{t} \\| \mathrm{c})$	$\mathbf{p}(\mathrm{t} \\| \mathrm{c}) \mathrm{p}(\mathrm{c})$
actress	.0000315	.000117	3.69×10^{-9}
cress	.000000014	.00000144	2.02×10^{-14}
caress	.0000001	.0000164	1.64×10^{-13}
access	.000058	.000000209	1.21×10^{-11}

- acress is rewritten as 'actress'
- use more intelligent prior to improve results in context

Bayes' Rule \& Noisy Channel

	P(Input)	P(Output\|Input)
Machine Translation		Translation model
OCR		Model of OCR errors
Spellchecking		Model of spelling errors
POS-Tagging	Language Model	Tag-Word Model
Speech Recognition		Acoustic model

Probabilistic n-gram POS Tagging

- Requires annotated corpus
can/md the/dt tag/nn be/vb better/jjr
- Unigram: P (word|tag) $\mathrm{P}($ tag $)$
frequency of the tag for this word in corpus
- Bigram: $\quad P\left(\right.$ word $\left._{i} \mid \operatorname{tag}_{i}\right) P\left(\operatorname{tag}_{i} \mid \operatorname{tag}_{i-1}\right)$
frequency of the tag for this word in corpus, given previous tag
- Trigram: $\quad \mathrm{P}\left(\right.$ word $\left._{\mathrm{i}} \mid \operatorname{tag}_{\mathrm{i}}\right) \mathrm{P}\left(\right.$ tag $\left._{\mathrm{i}} \mid \operatorname{tag}_{\mathrm{i}-1}, \operatorname{tag}_{\mathrm{i}-2}\right)$
frequency of the tag for this word in corpus, given previous two tags
- Good Results, but possible data sparseness problems

Bayes' Rule \& Noisy Channel

	P(Input)	P(Output\|Input)
Machine Translation		Translation model
OCR		Model of OCR errors
Spellchecking		Model of spelling errors
POS-Tagging	Language Model	Tag-Word Model
Speech Recognition		Acoustic model

Modeling English Pronunciation Variation

- Differences in pronunciation
- 2 classes:
- allophonic variation (due to context)

$$
\begin{array}{rll}
\text { about } & - & {[\text { ax b aw }] 32 \%} \\
& - & {[\text { ax b aw t] } 16 \%} \\
& - & {[\text { ix b aw }] \quad 8 \%}
\end{array}
$$

- Lexical variation

$$
\text { about } \quad-\quad[b a w] \quad 9 \%
$$

Modeling English Pronunciation Variation

- we can model the distribution of this variation by introducing probabilities into a FSA
= a Weighted Automaton (Markov Chain)

- Models Sociolinguistic variation

Universiteit Antwerpen

Modeling English Pronunciation Variation

- model allophonic variation:

Universiteit Antwerpen

Modeling English Pronunciation Variation

- "about": actual weighted automaton trained on pronunciations of Switchboard Corpus

Universiteit Antwerpen

\measuredangle

$$
\begin{gathered}
\text { Edit } \\
\text { Distance }
\end{gathered}
$$

Universiteit Antwerpen

Minimum Edit Distance

- Spell checking: check writing against list of words/morphotactics
- Suggest list of alternatives?
closest match
fuzzy match
- How to calculate the "distance" between two words: minimum edit distance
- The minimal number of deletions, insertions, substitutions to go from word a to b

Universiteit Antwerpen

Minimum Edit Distance

- intention vs execution
- 3 operations (deletion, insertion, substitution)
- Alignment

\mathbf{i}	\mathbf{n}	\mathbf{t}	\mathbf{e}	$\boldsymbol{*}$	\mathbf{n}	\mathbf{t}	\mathbf{i}	\mathbf{o}	\mathbf{n}
$\boldsymbol{*}$	\mathbf{e}	\mathbf{x}	\mathbf{e}	\mathbf{c}	\mathbf{u}	\mathbf{t}	\mathbf{i}	\mathbf{o}	\mathbf{n}
\mathbf{d}	\mathbf{s}	\mathbf{s}		\mathbf{i}	\mathbf{s}				

- Levenshtein distance: equal weight to all operations, no substitution (1substition $=1$ deletion +1 insertion)
- Levenshtein distance of 8 in example above

G

Minimum Edit Distance

[delete i]
[substitute n for e]
[substitute t for x]
[insert c]
[substitute n for u]
$i n t e n t i o n$
$n t \in n t i o n$
$e t e n t i o n$
$e x \in n t i o n$
$e x \in c n t i o n$
e $x \in c u t i o n$

Minimum Edit Distance

- Computed through dynamic programming
- Solve problem by combining solutions to subproblems
- Table-driven
- Useful for
- Alignment
- Fuzzy string match
- Spelling correction

Universiteit Antwerpen

Algorithm

Function LEVENSHTEIN-DISTANCE(target,source) returns levenshtein-distance
$n \leftarrow$ length(target)
$m \leftarrow$ length(source)
Create a distance matrix distance $[n+1, m+1]$
Initialize the $0^{\text {th }}$ row and column to be the distance from the empty string
distance $[0,0]=0$
for each column i from 1 to n do
distance $[i, 0] \leqslant$ distance $[i-1,0]+1$ (= insertion cost)
for each row j from 1 to m do
distance $[0, j] \leftarrow$ distance $[0, j-1]+1$ (= deletion cost)
For each column i from 1 to n do
for each row j from 1 to m do
distance $[i, j] \leftarrow$ MIN(distance $[i-1, j]+1$ (= insertion-cost),
distance $[i, j-1]+1$ (= deletion-cost),
distance $[i-1, j-1]+2$ (substition cost if $A \neq B$)
)
Return distance[n,m]

Universiteit Antwerpen

Edit distance matrix

n	9	18	$\longleftarrow \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\measuredangle \leftarrow \downarrow 12$	$\downarrow 11$	$\downarrow 10$	$\downarrow 9$	<8
0	8	$\downarrow 7$	$\longleftarrow \vdash 18$	$\longleftarrow \leftarrow 19$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\downarrow 10$	19	$\measuredangle 8$	19
i	7	16	$\longleftarrow \leftarrow 17$	$\longleftarrow \leftarrow 18$	$\measuredangle \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\downarrow 9$	$\checkmark 8$	$\leftarrow 9$	$\leftarrow 10$
t	6	$\downarrow 5$	$\longleftarrow \leftarrow \downarrow 6$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow \downarrow 8$	$\measuredangle \leftarrow \downarrow 9$	<8	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \downarrow 11$
n	5	$\downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow \downarrow 6$	$\measuredangle \leftarrow \downarrow 7$	$\llcorner\leftarrow \downarrow 8$	$\longleftarrow \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\longleftarrow \leftarrow \downarrow 11$	$\checkmark \downarrow 10$
e	4	$\checkmark 3$	$\leftarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\leftarrow 6$	$\leftarrow 7$	$\longleftarrow \leftarrow \downarrow 8$	$\measuredangle \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\downarrow 9$
t	3	$\measuredangle \leftarrow \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\swarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow \downarrow 8$	$\checkmark 7$	$\leftarrow \downarrow 8$	$\longleftarrow \vdash \downarrow 9$	18
n	2	$\measuredangle \leftarrow \downarrow 3$	$\longleftarrow \leftarrow 14$	$\longleftarrow \leftarrow \downarrow 5$	$\measuredangle \leftarrow 16$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \vdash 18$	17	$\longleftarrow \vdash 18$	$\checkmark 7$
i	1	$\measuredangle \leftarrow \downarrow 2$	$\llcorner\vdash \downarrow 3$	$\llcorner\vdash \downarrow 4$	$\measuredangle \leftarrow \downarrow 5$	$\measuredangle \vdash \downarrow 6$	$\longleftarrow \leftarrow \downarrow 7$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
ε	0	1	2	3	4	5	6	7	8	9
	ε	e	x	e	c	u	t	i	0	n

Universiteit Antwerpen

n	9	18	$\measuredangle \leftarrow 19$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\measuredangle \leftarrow \downarrow 12$	$\downarrow 11$	$\downarrow 10$	19	$\angle 8$
0	8	17	$\longleftarrow \leftarrow \downarrow 8$	$\longleftarrow \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\downarrow 10$	19	$\checkmark 8$	19
i	7	16	$\longleftarrow \leftarrow 17$	$\longleftarrow \leftarrow 18$	$く \leftarrow 19$	$\measuredangle \leftarrow \downarrow 10$	$\downarrow 9$	$\llcorner 8$	$\leftarrow 9$	$\leftarrow 10$
t	6	$\downarrow 5$	$<\leftarrow 16$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow 18$	$\longleftarrow \leftarrow 19$	$\angle 8$	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \downarrow 11$
n	5	14	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\llcorner\leftarrow \downarrow 7$	$\llcorner\leftarrow \downarrow 8$	$\longleftarrow \leftarrow 19$	$\longleftarrow \vdash \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\checkmark \downarrow 10$
e	4	$\checkmark 3$	$\leftarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\leftarrow 6$	$\leftarrow 7$	$\llcorner\leftarrow 18$	$\longleftarrow \vdash \downarrow 9$	$\longleftarrow \leftarrow \downarrow 10$	19
t	3	$\longleftarrow \leftarrow \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \vdash 16$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow 18$	$\checkmark 7$	$\leftarrow \downarrow 8$	$\longleftarrow \leftarrow 19$	18
n	2	$\measuredangle \leftarrow \downarrow 3$	$\measuredangle \leftarrow 14$	$<\leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\longleftarrow \leftarrow 17$	$\longleftarrow \leftarrow 18$	17	$\measuredangle \leftarrow 18$	$\checkmark 7$
i	1	$\longleftarrow \leftarrow 12$	$\longleftarrow \leftarrow 13$	$\longleftarrow \vdash \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\measuredangle \leftarrow 17$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
ε	0	1	2	3	4	5	6	7	8	9
	ε	e	x	e	c	u	t	i	0	n

Edit operations are determined by starting from the top right cell, following the arrows to find a path to cello. Often, several paths are possible.

Path 1

COLO [delete i]
COL1 [substitute n for e]
COL2 [substitute t for $x]$
COL3
COL4 [insert c]
COL5 [substitute n for u]
COL6
...COL9
Universiteit Antwerpen

```
inten t i o n
    n t e n t i o n
    et ent i on
    e x ent i on
    ex en t i on
    ex ecn t i on
    ex e cut i o n
    e x e cut i o n
    ex e cut i o n
```

n	9	18	$\measuredangle \leftarrow 19$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\measuredangle \leftarrow \downarrow 12$	$\downarrow 11$	$\downarrow 10$	19	$\angle 8$
0	8	17	$\longleftarrow \leftarrow \downarrow 8$	$\longleftarrow \leftarrow \downarrow 9$	$\measuredangle \leftarrow \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\downarrow 10$	19	$\checkmark 8$	19
i	7	16	$\longleftarrow \leftarrow 17$	$\longleftarrow \leftarrow 18$	$く \leftarrow 19$	$\measuredangle \leftarrow \downarrow 10$	$\downarrow 9$	$\llcorner 8$	$\leftarrow 9$	$\leftarrow 10$
t	6	$\downarrow 5$	$<\leftarrow 16$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow 18$	$\longleftarrow \leftarrow 19$	$\angle 8$	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \downarrow 11$
n	5	14	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow \downarrow 6$	$\llcorner\leftarrow \downarrow 7$	$\llcorner\leftarrow \downarrow 8$	$\longleftarrow \leftarrow 19$	$\longleftarrow \vdash \downarrow 10$	$\measuredangle \leftarrow \downarrow 11$	$\checkmark \downarrow 10$
e	4	$\checkmark 3$	$\leftarrow 4$	$\longleftarrow \vdash 15$	$\leftarrow 6$	$\leftarrow 7$	$\llcorner\leftarrow 18$	$\longleftarrow \vdash \downarrow 9$	$\longleftarrow \leftarrow \downarrow 10$	19
t	3	$\longleftarrow \leftarrow \downarrow 4$	$\longleftarrow \leftarrow 15$	$\longleftarrow \vdash 16$	$\longleftarrow \leftarrow \downarrow 7$	$\longleftarrow \leftarrow 18$	$\checkmark 7$	$\leftarrow \downarrow 8$	$\longleftarrow \leftarrow 19$	18
n	2	$\leq \leftarrow 13$	$<\leftarrow 14$	$<\leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\longleftarrow \leftarrow 17$	$\longleftarrow \leftarrow 18$	17	$\measuredangle \leftarrow 18$	$\checkmark 7$
i	1	$\measuredangle \leftarrow \downarrow 2$	$\measuredangle \leftarrow 13$	$\longleftarrow \leftarrow \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\longleftarrow \leftarrow 16$	$\measuredangle \leftarrow 17$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
ε	0	1	2	3	4	5	6	7	8	9
	ε	e	x	e	c	u	t	i	0	n

Edit operations are determined by starting from the top right cell, following the arrows to find a path to cell0. Often, several paths are possible.

Path 1
COLOa [delete i]
COLOb [delete n]
COLOc [delete t]
COL1
COL2 [insert x]
COL3 [substitute n for e]
COL4 [insert c]
COL5 [insert u]

```
inten t i o n
n t en t i o n
    t ent i on
    ention
    ention
    e x n t i o n
    e x e t i o n
    e x e c t i o n
    ex e cut i on
```


Exercise

Calculate the levenshtein distance between
'delen' en 'gedeeld'

\mathbf{n}	5							
\mathbf{e}	4							
\mathbf{l}	3							
\mathbf{e}	2							
\mathbf{d}	1							
\mathbf{E}	0	1	2	3	4	5	6	7
	\boldsymbol{E}	\mathbf{g}	\mathbf{e}	\mathbf{d}	\mathbf{e}	\mathbf{e}	\mathbf{l}	\mathbf{d}

Exercise

Calculate the levenshtein distance between
'delen' en `gedeeld'

\mathbf{n}	5	$\swarrow \leftarrow \downarrow 6$						
\mathbf{e}	4	$\swarrow \leftarrow \downarrow 5$						
\mathbf{l}	3	$\swarrow \leftarrow \downarrow 4$						
\mathbf{e}	2	$\swarrow \leftarrow \downarrow 3$						
\mathbf{d}	1	$\measuredangle \leftarrow \downarrow 2$						
\mathbf{E}	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	\mathbf{g}	\mathbf{e}	\mathbf{d}	\mathbf{e}	\mathbf{e}	\mathbf{l}	\mathbf{d}

Universiteit Antwerpen

Exercise

Calculate the levenshtein distance between
'delen' en `gedeeld'

\mathbf{n}	5	$\swarrow \leftarrow \downarrow 6$	$\downarrow 5$					
\mathbf{e}	4	$\swarrow \leftarrow \downarrow 5$	$\measuredangle \downarrow 4$					
\mathbf{l}	3	$\swarrow \leftarrow \downarrow 4$	$\downarrow 3$					
\mathbf{e}	2	$\swarrow \leftarrow \downarrow 3$	$\swarrow 2$					
\mathbf{d}	1	$\measuredangle \leftarrow \downarrow 2$	$\measuredangle \leftarrow \downarrow 3$					
\mathbf{E}	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	\mathbf{g}	\mathbf{e}	\mathbf{d}	\mathbf{e}	\mathbf{e}	\mathbf{I}	\mathbf{d}

Universiteit Antwerpen

Exercise

Calculate the levenshtein distance between
'delen' en 'gedeeld'

\mathbf{n}	5	$\swarrow \leftarrow \downarrow 6$	$\downarrow 5$	$\swarrow \leftarrow \downarrow 6$				
\mathbf{e}	4	$\swarrow \leftarrow \downarrow 5$	$\measuredangle \downarrow 4$	$\swarrow \leftarrow \downarrow 5$				
\mathbf{l}	3	$\swarrow \leftarrow \downarrow 4$	$\downarrow 3$	$\swarrow \leftarrow \downarrow 4$				
\mathbf{e}	2	$\swarrow \leftarrow \downarrow 3$	$\measuredangle 2$	$\leftarrow \downarrow 3$				
\mathbf{d}	1	$\measuredangle \leftarrow \downarrow 2$	$\measuredangle \leftarrow \downarrow 3$	$\measuredangle 2$				
\mathbf{E}	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	\mathbf{g}	\mathbf{e}	\mathbf{d}	\mathbf{e}	\mathbf{e}	\mathbf{l}	\mathbf{d}

Universiteit Antwerpen

Exercise

Calculate the levenshtein distance between
'delen' en `gedeeld'

n	5	$\measuredangle \leftarrow \downarrow 6$	$\downarrow 5$	$\measuredangle \leftarrow \downarrow 6$	$\downarrow 5$			
e	4	$\measuredangle \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\measuredangle \leftarrow \downarrow 5$	$\checkmark \downarrow 4$			
I	3	$\measuredangle \leftarrow \downarrow 4$	$\downarrow 3$	$\longleftarrow \leftarrow \downarrow 4$	$\downarrow 3$			
e	2	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow \downarrow 3$	$\angle 2$			
d	1	$\longleftarrow \leftarrow \downarrow 2$	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow 3$			
ε	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	g	e	d	e	e	I	d

Exercise

Calculate the levenshtein distance between
'delen' en 'gedeeld'

n	5	$\longleftarrow \leftarrow \downarrow 6$	$\downarrow 5$	$\measuredangle \leftarrow \downarrow 6$	$\downarrow 5$	$\downarrow 4$		
e	4	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\checkmark 3$		
I	3	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\vdash \downarrow 4$		
e	2	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow \downarrow 3$	$\measuredangle 2$	$\iota \leftarrow 3$		
d	1	$\longleftarrow \leftarrow \downarrow 2$	$\llcorner\leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow 3$	$\leftarrow 4$		
ε	0	1	2	3	4	5	6	7
	ε	g	e	d	e	e	I	d

Universiteit Antwerpen

Exercise

Calculate the levenshtein distance between
'delen' en `gedeeld'

n	5	$\longleftarrow \leftarrow \downarrow 6$	$\downarrow 5$	$\measuredangle \leftarrow \downarrow 6$	$\downarrow 5$	$\downarrow 4$	$\measuredangle \leftarrow \downarrow 5$	
e	4	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\llcorner\downarrow 4$	$\checkmark 3$	$\leftarrow \downarrow 4$	
I	3	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\vdash \downarrow 4$	$\checkmark 3$	
e	2	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow \downarrow 3$	$\measuredangle 2$	$\measuredangle \leftarrow 3$	$\leftarrow 4$	
d	1	$\longleftarrow \leftarrow \downarrow 2$	$\llcorner\leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	
ε	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	g	e	d	e	e	1	d

Exercise

Calculate the levenshtein distance between 'delen' en 'gedeeld'

n	5	$\llcorner\leftarrow \downarrow 6$	$\downarrow 5$	$\measuredangle \leftarrow \downarrow 6$	$\downarrow 5$	$\downarrow 4$	$\measuredangle \leftarrow \downarrow 5$	$\measuredangle \leftarrow \downarrow 6$
e	4	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\checkmark 3$	$\leftarrow \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$
I	3	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\measuredangle \leftarrow \downarrow 4$	13	$\llcorner\leftarrow \downarrow 4$	$\checkmark 3$	$\leftarrow 4$
e	2	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow \downarrow 3$	$\checkmark 2$	$\measuredangle \leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$
d	1	$\longleftarrow \leftarrow \downarrow 2$	$\measuredangle \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\swarrow \leftarrow 6$
ε	0	1	2	3	4	5	6	7
	$\boldsymbol{\varepsilon}$	g	e	d	e	e	1	d

n	5	$\llcorner\leftarrow \downarrow 6$	$\downarrow 5$	$\llcorner\vdash \downarrow 6$	$\downarrow 5$	14	$\llcorner\leftarrow \downarrow 5$	$\longleftarrow \leftarrow \downarrow 6$
e	4	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$	$\checkmark \downarrow 4$	$\checkmark 3$	$\leftarrow \downarrow 4$	$\longleftarrow \leftarrow \downarrow 5$
I	3	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\leftarrow \downarrow 4$	$\downarrow 3$	$\llcorner\vdash \downarrow 4$	$\checkmark 3$	$\leftarrow 4$
e	2	$\longleftarrow \leftarrow \downarrow 3$	$\checkmark 2$	$\leftarrow \downarrow 3$	$\measuredangle 2$	$\kappa \leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$
d	1	$\measuredangle \leftarrow \downarrow 2$	$\measuredangle \leftarrow \downarrow 3$	$\measuredangle 2$	$\leftarrow 3$	$\leftarrow 4$	$\leftarrow 5$	$\measuredangle \leftarrow 6$
ε	0	1	2	3	4	5	6	7
	ε	g	e	d	e	e	I	d

COL1	[insert g]
COL2	[insert e]
COL3	
COL4	
COL5	[insert e]
COL6	
COL6b	[delete e]
COL7	[substitute n for $d]$

```
    delen
    gdel en
gedelen
gedelen
gedelen
gedeelen
gedeelen
gedeeln
gedeeld
```

Zie ook: http://www.let.rug.nl/kleiweg/lev/

Assignment
\ggg from nltk.corpus import brown
>>> corpus = brown.sents()
\ggg corpus[4]
[u'The', u'jury', u'said', u'it', u'did', u'find', u'that', u'many', u'of', u"Georgia's", u'registration', u'and', u'election', u'laws', u' ` ', u'are', u'outmoded', u'or', u'inadequate', u'and', u'often', u'ambiguous', u"'", u'.']

Write a script that extracts a trigram language model from this corpus. You can do this in 5 steps:

1. Create a dictionary (trigrams $=\{ \}$) and add all trigrams in the corpus (key) and their associated count (value).
2. Create a dictionary (bigrams $=\{ \}$) and add all bigrams in the corpus (key) and their associated count (value).
3. For every key in the trigram dictionary, divide the count by the value of the relevant bigram
4. Your trigram dictionary now contains probabilities
5. (save the dictionary using pickle)

Write a script that computes the probability of a sentence, according to your language model
>>> probability(corpus[4]) = <some value>
DEADLINE: 22 December 2014

Send python code through e-mail to guy.depauw@uantwerpen.be
Don't hesitate to contact your helpline guy.depauw@uantwerpen.be

Universiteit Antwerpen

