from pattern.vector import Document, Model, HIERARCHICAL
maker=open('cqrr/maker1').read()
orel=open('cqrr/oreally').read()
#theo=open('cqrr/theogony').read()
d1 = Document(maker, name='1')
d2 = Document(orel, name='2')
#d3 = Document(theo, name='2')
m = Model([d1, d2])
#m = Model([d2,d3])
m.reduce(2)
for d in m.documents:
print
print d.name
for concept, w1 in m.lsa.vectors[d.id].items():
for feature, w2 in m.lsa.concepts[concept].items():
if w1 != 0 and w2 != 0:
print (feature, w1 * w2)
print m.cluster(method=HIERARCHICAL, k=2)
---------------------------------------------------------------------------------------------------------------------
from numpy import zeros
from scipy.linalg import svd
#following needed for TFIDF
from math import log
from numpy import asarray, sum
titles= open('cqrr/theogony', 'r')
#titles = ["The Neatest Little Guide to Stock Market Investing"]
sw= open('/usr/local/lib/python2.7/dist-packages/pattern/text/en/wordlist/stopwords.txt', 'r').read()
matrice=open('matrice.txt', 'w')
listwords=open('listwords.txt', 'w')
stopwords = []
stopwords.append(sw)
ignorechars = ''',:'!'''
lll=[]
class LSA(object):
def __init__(self, stopwords, ignorechars):
self.stopwords = stopwords
self.ignorechars = ignorechars
self.wdict = {}
self.dcount = 0
def parse(self, doc):
words = doc.split();
for w in words:
w = w.lower().translate(None, self.ignorechars)
if w in self.stopwords:
continue
elif w in self.wdict:
self.wdict[w].append(self.dcount)
else:
self.wdict[w] = [self.dcount]
#print self.wdict[w]
listwords.write(w + ',')
lll.append(w)
self.dcount += 1
def build(self):
self.keys = [k for k in self.wdict.keys() if len(self.wdict[k]) > 1]
self.keys.sort()
self.A = zeros([len(self.keys), self.dcount])
for i, k in enumerate(self.keys):
for d in self.wdict[k]:
self.A[i,d] += 1
def calc(self):
self.U, self.S, self.Vt = svd(self.A)
def TFIDF(self):
WordsPerDoc = sum(self.A, axis=0)
DocsPerWord = sum(asarray(self.A > 0, 'i'), axis=1)
rows, cols = self.A.shape
for i in range(rows):
for j in range(cols):
self.A[i,j] = (self.A[i,j] / WordsPerDoc[j]) * log(float(cols) / DocsPerWord[i])
def printA(self):
print 'Here is the count matrix'
print self.A
def printSVD(self):
print 'Here are the singular values'
print self.S
print "U values:=================================================+"
print self.U
matrice.write(self.U)
#print 'Here are the first 3 columns of the U matrix'
# print -1*self.U[:, 0:3]
#print 'Here are the first 3 rows of the Vt matrix'
#print -1*self.Vt[0:3, :]
mylsa = LSA(stopwords, ignorechars)
for t in titles:
mylsa.parse(t)
mylsa.build()
mylsa.printA()
mylsa.calc()
mylsa.printSVD()
-----------------------------------------------boh
from numpy import zeros
from scipy.linalg import svd
#following needed for TFIDF
from math import log
from numpy import asarray, sum
titles= open('cqrr/theogony.txt', 'r')
#titles = ["The Neatest Little Guide to Stock Market Investing"]
sw= open('/usr/local/lib/python2.7/dist-packages/pattern/text/en/wordlist/stopwords.txt', 'r').read()
stopwords = []
stopwords.append(sw)
ignorechars = ''',:'!'''
class LSA(object):
def __init__(self, stopwords, ignorechars):
self.stopwords = stopwords
self.ignorechars = ignorechars
self.wdict = {}
self.dcount = 0
def parse(self, doc):
words = doc.split();
for w in words:
w = w.lower().translate(None, self.ignorechars)
if w in self.stopwords:
continue
elif w in self.wdict:
self.wdict[w].append(self.dcount)
else:
self.wdict[w] = [self.dcount]
self.dcount += 1
def build(self):
self.keys = [k for k in self.wdict.keys() if len(self.wdict[k]) > 1]
self.keys.sort()
self.A = zeros([len(self.keys), self.dcount])
for i, k in enumerate(self.keys):
for d in self.wdict[k]:
self.A[i,d] += 1
def calc(self):
self.U, self.S, self.Vt = svd(self.A)
def TFIDF(self):
WordsPerDoc = sum(self.A, axis=0)
DocsPerWord = sum(asarray(self.A > 0, 'i'), axis=1)
rows, cols = self.A.shape
for i in range(rows):
for j in range(cols):
self.A[i,j] = (self.A[i,j] / WordsPerDoc[j]) * log(float(cols) / DocsPerWord[i])
def printA(self):
print 'Here is the count matrix'
print self.A
def printSVD(self):
print 'Here are the singular values'
print self.S
print 'Here are the first 3 columns of the U matrix'
print -1*self.U[:, 0:3]
print 'Here are the first 3 rows of the Vt matrix'
print -1*self.Vt[0:3, :]
mylsa = LSA(stopwords, ignorechars)
for t in titles:
mylsa.parse(t)
mylsa.build()
mylsa.printA()
mylsa.calc()
mylsa.printSVD()